Realizing Full N-shifts in Simple Smale Flows

نویسندگان

  • MICHAEL C. SULLIVAN
  • John Franks
چکیده

Smale flows on 3-manifolds can have invariant saddle sets that are suspensions of shifts of finite type. We look at Smale flows with chain recurrent sets consisting of an attracting closed orbit a, a repelling closed orbit r and a saddle set that is a suspension of a full n-shift and draw some conclusions about the knotting and linking of a ∪ r. For example, we show for all values of n it is possible for a and r to be unknots. For any even value of n it is possible for a ∪ r to be the Hopf link, a trefoil and meridian, or a figure-8 knot and meridian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Study of Simple Smale Flows Using Four Band Templates

In this paper, we discuss how to realize a non singular Smale flow with a four band template on 3-sphere. This extends the work done by the second author on Lorenz Smale flows, Bin Yu on realizing Lorenz Like Smale flows on 3-manifold and continues the work of Elizabeth Haynes and the second author on realizing simple Smale flows with a different four band template on 3-sphere.

متن کامل

2 5 Ju n 19 99 Visually Building Smale flows in S 3

A Smale flow is a structurally stable flow with one dimensional invariant sets. We use information from homology and template theory to construct, visualize and in some cases, classify, nonsingular Smale flows in the 3-sphere.

متن کامل

Zeeman Numbers and Orbit Splitting in Flows

The Zeeman number is an invariant of flow equivalence of suspensions of shifts of finite type. We prove that the Zeeman number increases by one when splitting a periodic orbit of a Smale flow. This allows us to define the Zeeman number of any non-anomalous Anosov flow.

متن کامل

Dynamical correspondences for Smale spaces

We initiate the study of correspondences for Smale spaces. Correspondences are shown to provide a notion of a generalized morphism between Smale spaces and are a special case of finite equivalences. Furthermore, for shifts of finite type, a correspondence is related to a matrix which intertwines the adjacency matrices of the shifts. This observation allows us to define an equivalence relation o...

متن کامل

Attractor Networks on Complex Flag Manifolds

Robbin and Salamon showed in [10] that attractor-repellor networks and Lyapunov maps are equivalent concepts and illustrate this with the example of linear flows on projective spaces. In these examples the fixed points are linearly ordered with respect to the Smale order which makes the attractor-repellor network overly simple. In this paper we provide a class of examples in which the attractor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015